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INTRODUCTION

Thp goal of designing computer vision algorithms for image recognition systems,
broadly stated, is to produce automatic tools to acquire, manipulate, understand, and
process imagery information, and through this, to identify the objeuts that generate such
images. This goal is made difficult to achieve not only by the large amount of informa-
tion contained in an image and the variability under which imagery data can be
produced, but also by the number of different aspects that the same object can have in
different images (ref 1). In an effort to understand these problems, researchers have
isolated the details of the behavior of the particular components of an image recognition
system, and studied them under controlled conditions. This has led to a number of
image models, and a greater understanding of the physics of images. Another outcome
of this effort was a large number of special purpose algorithms, capable of handling a
limited array of image variations.

These stand-alone components introduced system integration problems; The com-
ponents were designed with no knowledge about each other, and with expectations
about the preceding and succeeding stages of the system which were not always
satisfied. Therefore, with robustness as a paramount issue, the goal of total system
integration has been a fleeting objective for the past 20 years, and it has become very
clear that the compcnents for an integrated system must adhere to standards of per-
formance and robustness which make them computationally impractical, Not only do
they require a large amount of hardware (both memory and computer power), but as 'h
number of variations the system must handle is increased, so does the serial nature .
the algorithms, removing the hopes of full parallel processing computation.

It was also clear from the lessons of Nature, that this trend was running contrary to
the underlying theme seen in natural vision systems. The natural design, exposed by
more recent neurophysiological research, is formed by simple, parallel, cooperating-
competing systems. The natural design is also carefully harmonized with the environ-
ment of the animal and the purpose for which visual information is to be used. With the
advent of more mature research into the architecture and the behavioral aspects of the
visual nervious systems, an entirely new philosophy of image recognition system design
could be embraced. This philosophy concentrated on the design of simple and mas-
sively parallel structures, with a simultaneous application of a set of mutally satisfying
constraints over the entire image (ref 2). However, it was noticed that each individual
algorithm resulting from this new philosophy did not perform as well as its more com-
plex classical counterpart; not all image variations couid be taken into consideration. To
circumvent this problem, some assumptions needed to be made about the image. This
was the same shortcoming present in the classical case. Nevertheless, the new design
offered an unprecedented opportunity to circumvent this problem; the highly decentral-
ized and parallel algorithms permitted mutal interaction and tuning. This allowed pursuit
of designs that contain competing and cooperating algorithms: when an algorithm did
not perform well under certain types of image variations, another was used (ref 3).
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The information needed to hypothesize the properties of the image data could now
be taken from the output of higher level components of the system. This permitted the
initial estimates constantly to be refined throughout the processing time (resonance).
The entire system became tightly connected and robust, although it still maintained
basic simplicity and a high degree of parallelism.

DESIGN PROCEDURE FOR RESONATING ALGORITHMS

No matter how complex the algorithm, it can never be designed to successfully
account for all possible aspect variations that an object can produce in real images.
-he more complete the algorithm, the more serial and computationally expensive it

becomes. With complex imagery, there will always be cases that have not been con-
sidered. Since it is impossible to consider all cases beforehand, an alternative

,+hadology is proposed that employs simple and robust parallel algorithms that are
ro-, :., ,-.-a ct according to a set of parallel multiple constraints (fig. 1).

Cobst /
F:'-t a' ', ',C.dn & u'stne S

A lqrlithrr" Con peterness

Figure 1. Cost and parallelism variation versus completeness

Ih~se algorithms are designed by stating the list of physical phenomena that give
tic to Important characteristics of the image and at the same time constrain the pos-
,iblp differences in object appearance. For example, if the object of interest is white,
fiw-- at near random patterns, and usually will be seen at night, then the algorithm

!,' concentrate on detecting a bright pixel grouping which represents a discontinuity
!i ti- dark backciround in both time and space. Such constraints, once applied ovpr the
ermhe irnaea. should cause automatic disregard of large fixed white backgrounds, speck
i7r whiie patterns (e.g.. sensor noise), and any other nonwhite region. A simple way to

':.ai-d~ thesc; contraints in parallel is to have every pixel check its value and the values
.) itd ripirihhor' i,-i time and space. If the pixel finds itself with a white measurpmprilt
.,,,~rr~ lr h, a dark bar.kgro,.jnd, it labels itself as background and discards th'e white



measurement as noise. If it has a white neighborhood but it is fixed in time, it also
discards the measurement labeling itself as background. Only when it finds discon-
tinuity in time with a consistent white neighborhood in space, does it take the label of an
object of interest. The hypothesis created at this stage will be confirmed by later stages
of processing. This type of constraint satisfaction problem has been demonstrated to
be equivalent to resistive or simple nonlinear, uniform analog circuits.

The equations described by such a process as noncasual in both space and time.
This suggests that a single pixel cannot definitely label itself until all other pixels are
labeled in the mage. To solve this problem, processing is done in stages. Initially, the
pixels take an educated gues at their labels; then, competition allows for each pixel in
parallel to look at its neighborhood and adjust its value. This process corresponas to a
descent in the energy space of the system, settling down in the best compromise of all
hypotheses (not necessarily the most optimum compromise). The final interpretation is
,aid to resonate in the system, and the values of the pixel classification are said to be at
a fixed point (this is the first type of resonance described) (fig. 2).

Notice that the design of such an algorithm could have benefited from another
algorithm which would be carefully tuned to discern movement only with a certain range
of speeds. This algorithm could pick up objects of interest by analyzing motion, and
could be used to predict the future object position since it retains information about the
trajectory. It would not be able to discern among objects of different colors in the - -9
way tht the previous algorithm could not discern among slower or faster moving obje,.

ft. j

Figure 2. IntralevE I resonance between algorithms
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By combining the output of both algorithms, a better interpretation of the image
coUld be achieved. In this particular case, after the internal resonance process, the
algorithms would exchange and mutally reinforce areas of interest, based on how much
they satisfy the constraints. This would allow the pixels another chance to review their
labels based on additional information. This process is repeated until another resonant
interpretation is found between the algorithms. Notice the much slow time scale of this
second process. Both algorithms still retain the qualities of parallelism, falut tolerance,
,snd simplicity.

A third level of processing is added to increase the level of confidence in the inter-

,pt qtiO. The previous resonance pointed out the areas of interest in the image and

pr-duced a large reduction in the data set size. However, nothing was said about how
brcht a!aorithm 1 should expect the object to be, or about how fast algorithm 2 should

the o,,ject Notice that if the interpretation is correct, the levels of confidence of
will increase, and the interpretation is said to be "locked" (they are

u~siry rein~tcbv "qr~t. the process decreases the initial level of confidence, and
-- , ~.rj-'-, -rpeated or ;L hc interpretation confidence will drop below

acceotable limits, and the region will be disu.,ded as noise. This third type of
resonance hapoens in a much slower time scale than the others. and it is responsible
for rpno\'irg amabiguities (fig. 3).

The third level can be used to finalize the interpretation by imposing additional
context" cons,,aints to the previous results. Assume tor example, that the object of
it.trest has specific patterns on its back and it flies only in the forwaid direction. The
oesence of high level features can be used to confirm the object identification. A

':-panion a'onrithm could take into account new hgih level features such as the
position of fixed ligh sources, and adjust the expected brightness value in algorithm 1.
if tr£i rinterpretation is fed back to the lower levels, resonance of the third kind described
t p! - c.. fuirther rnliancinq the interpretation.

,/ Level 3

Level 2

,e I

- ... t- Level 1
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The advantages of the separate modules as opposed to a monolithic desicin ar-
simplicity, adaptability, parallelism, fault tolerance, and robustness. The first benefits
are rather intuitive, and robustness reaiy illustrated. If the context is such that one of
the modules is rendered useless, there is enough support from other constraints to
make the correct interpretation (e.g., an object flying a straight collision course could
render the speed detector useless but not the brightness detector). This kind of
degenerate sitation is common in image interpretation system, and is the cause of the
poor performance of integrated systems. The types of highly parallel algorithm with
simple interconnecting elements as described here are known in the literature as con-
nectionist algorithms or neural networks (refs 4 and 5).

SPECIAL PURPOSE FEATURE BASED SYSTEM

To understand these concepts further and to study the stability and effectiveness of
the resonant mechanisms in a shape recognition problem, a simple but very useful
simulation based on Fourier and moments descriptors was constructed. To decrease
the computational load, the system was broken down into levels, each being respon-
sible for abstracting the data sent to another level. The system was designed to cope
with a large number of sensed images which differ both in spectra and in time. The
system should be able to recognize objects of different classes, same class and multi-
ple occurence, and multiple perspective, and it should handle large amount . of -,oise as
well as shape occlusion.

The system consists of three levels: a segmentation level, a feature extraction
level, and an object classification !evel (fig. 4). The segmentation level, although being
general. can enhance its performance with the knowledge obtained about object iden-
tification, position, and orientation. Object identification information is provided by the
tope level which works as an heteroassociative bidirectional memory (ref 6). -The
second level receives the segmented image and proceeds to extract features. It is also
capable of receiving the correct feature set, and reversing it to produce a model imagp
that can then be adjusted to match the input image. The top level, after receiving a
feature vector with noise, produces a nearest neighbor classification of it, and as the
output of the associative memory, gives information to the first level about the clas-
sification for parametric tuning. Since it is a bidirectional memory, it alters the feattire
vector to match the classifier Ihierprettior; this, in turn, forces the second level to correct
pixels misclassified by the first level (i.e., occluded pixels). This entire process works or
the resonance principles described above (fig. 4).
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Figure 4. Diagram of the shape recognition system

Segmentation Algorithm

he spqmentation algorithm is responsible for filtering out possible objects in the
irnu ge for final interpretation. To proceed in our design, let's define a set of physical
,.onstraints to construct the segmentation algorithm at the first level. For the sake of
simplir-iy in our discussion, only the following two assumptions about the objects were

Homogeneity: every object of interest is made of the same material and,
I .c-forp c0)h'.LIrJ produce similar visual results.

rmmw rt , every object of interest is, for the most part, solid and, there-
.... . r, ,' lr l r(!oDed neighborhoods.

V ..... '> tw; ;- ,mpt'on are fairly general, and they hold in a variety of situations.
-,w ;o: rlp oundary pixels of our objects as will be seen in the example. The mathe-
'mit -,-I! mndei that has given rise to the study of spatially dependent phenomena in
rtqWiar raiiihbnrhnoods ics called Markov Random Fields, and it will be used tomodel the

.. 1 ,'n rtv ptlon If a cprtan rannP of brightness values is accepted as repre
C ".f. ff t era' n, rrrtics a likelihood function is a good candidate for the

"tr'ro),qh 1



Problem Formulation

The problem of segmentation is defined as grouping parts of a generalized image
into regions. homogeneous with respect to some characteristics or features and result-
ing in a partitioned image (refs 9, 10 and 12 through 14).

Define a picture F = f(x,y) as a two dimensional intensity function f(x.y) 1 he
quantized version of f(x,y) in both spatial coordinates and intensity is denoted by thH
matrix G = fg] (N1 x N2). F is composed of M different iegions (which can occur an

arbitrary number of times each), and through the use of different sensors. K distfic:
images {Gk}k = 1..K of the same scene can be obtained.

Also. assume that each element g~ij is actually the sum of b~ij and illij and pixel (q)
being in region m through observation k

gki] = b'ij + 'igj

where {bkij} and {il'ij} are stochastic fields characterizing the underlying s, me. and the
observation noise, respectively, in the data set k. A further simplifying -s ,mption is
made: each region type m in each data set k can be characterized by , cor~i7tn'

intensity, r m, which is the mean of that region (i.e., bkjj rkM), if the pixel !,

region type m. Furthermore, the additive noise field Ilkij is assumed to be spam.
uncorrelated and Gaussian so that the vector of the observation noise

1 =  [111ij, 112ij ..... JjKij] T

is a multivariate normal with mean zero and covariance matrix C, in region m I,
implies that the observation vector

g,= [glij, g ij, .. gKjjjT

is a multivariate normal with mean r

= [r'm, r2m ..... rm]T

and covariance C), if pixel (i,) is in region type m

The segmentation problem can be stated as macp'nq Ginto a mart-, H'
from an estimate S^ of the sets S = {S } m = 1 ..M where

• i I I I I I II II I/



S, f{(i,j): bkij = rkm} (5)

B [blij] (N1 x N2): bij c (1 ...MI and bAij = m iff (i,j) C Sm (6)

nmaning, BA is an M-level image matrix, where bAij = m if Sm contains pixel (i,j).

I Ising the classical maximum likelihood segmentation method, define:

K21 2 T I
P,(X) = (2;T) KC4 exp[(x rm) C m (x -rm)] (7)

T he segmentation procedure will assign pixel (i,j) to region set Sm if

p, (g) >= p (g,,) and 1 =< I =< M (8)

,-I, :. thec' onlty w,'o;s ,.vH V 'r ,",nal-tonosie ratio is s/n E XV'o, where - r1 - r.

To develop a more robust procedure, it is necessary to bring other constraints into
the model. In this case, it is assumed that solids objects will appear in connected blobs
'11 suh'eots. At the pixel level, this would imply that for (i,j) to belong to region m

t,,11= m -_4 N b, , V: b,. .E.,C= m A eE {(-t',0, ),(i +E, J +e) (i'J)} (9)

ihi can be modeled by a Markov field with 8-nearest neighbors defining the process
-1,ipport Assuming this liMited support, the Markov process can be characterized by

, tran'iticr probabilities

= rrn, 1 =- k =< K I brs
<r =< N 1 =< s =< N2

(r.s) (ij), 1=< k =< K)

1 -- -,, I brs(r,s)r5,, 1=<k=<K)=
F' (10)

o i, " the local neiqlb orhood of pixel (i, j) as in equation 9. The segmentation
• '-Io, r .r )nw be forrm lated as a maximum A posteriori probability (MAP) estimation
prh~mn In pn.rbtilar, let 1(.) represent a log-likelihood function. We would then like to
fiI tho aqimatl 2' which maximizes the conditional likelihood

"- I Z)lI I-I Ci"I, l I I +l



or since I(G) is independent of S^, more simply we can minimize

1 (SAG) = I (G/S ^) + 1 (SA) (12)

In this case,

1 (G/SA) = IM 1 1(ij)e s," 1 n{Pm (g,,)} (13)

and

1(SA) j e SM 1 n{PijM} (14)

where pm and Pm are defined in equation 8 and 10, respectively.

The solution to this equation can be found in parallel, by applying these constraints
to all the pixels of the image, which have been utilized with the brightness value of each
point. The relaxation process that follows decreases the overall energy of the sytem by
modifying each individual pixel classification, or the sets S = {Sm} m=1 ...M (refs 13 and
14). Similar equations have also been the motivation for optimization in SLch relaxation
lattices (refs 15 through 18).

An airplane image 512 x 480, subject to glare, noise, and a nonuniforfm backguok,
is shown in figure 5. Using simply the constraints above, the parallel implementation ot
the segmentation algorithm relaxes to the interpretation given in figure 6. Notice that
only the first king of resonance is at work, and that the constraints are extremely simple.
More sophisticated schemes are capable of handling textures during the segmentation
process (ref 19).

FEATURE EXTRACTION WITH CONNECTIST MODELS

There has been a considerable amount of wojrk done on shape encoding and
recognition using moments and Fourier descriptors (refs 20 through 28). The decision
to use such models was based on the fact that this procedure is simple and well under-
stood, and can be made reversible.

In this system, the feature extractor module receives a portion of the image from the
segmentor. This image portion contains only the labels of the pixels and not the pixel
values themselves (fig. 4). The module then applies a transformation to the image and
produces at the output the important features to describe the object. The choice of the
set of transformations and features can be made abitrarily complex, but for the sake of
simplicity, only the Fourier descriptor method is discussed.

9



Fourier Descriptor Method

There are two ways of designing a high parallel, feature-based module. (1) The
more classical methods of extracting parallelism from a given algorithm can be applied.
The dataflow graph of the algorithm is created, a careful investigation of the application
of various transformations is made, and the resulting data flow graph is compared for
parallelism and speedup (i.e., increased breadth and reduced depth of the graph). After
the final transformation, the algorithm is hardwired into the computer architecture. (2) A
less traditional and perhaps more interesting approach is to take advantage of the
adaptive characteristic of connectionist models. There, we start with the parallel model,
arid using a learning algorithm, adapt the system until the cohort of elements produces
the desired transform. This model sometimes leads to approximations of the original
tratnsforms due to the need for limiting the number of processors used. Besides leading

,_ -Droximations in most cases (ref 29), our application can make good use of
this aaap',v,. i-eThod since, on a practical implementation, even the successful tradi-
ht ,al transform designs wo 'I also be subject to approximation and truncations (ref
28).

With this adpative method, an inverse transform module, which would feedback the
correct pixel classification to the segmentation unit after recognition can be designed. It
is important to be able to reconstruct the original image after recognition for a variety of
reasons. Pe:,haps, the most important one is the ability to deal with multiple objects and
occlusions. This works as follows: Assume that the segmentation algorithm can
separate the image into several different sets of pixels according to some homogenity
criteria. The identification system would be more sensitized by the object which is the
largest or with least amount of occlusion, the least noisy, or the least ambiguous. After
the identification is correctly done, the system can send an inhibitory signal to all the
pixels that participate in that object, and it would be free to pick up the next prominent
available object even if it was partially occluded by the first. In this global serial mode,
the system proceeds to identify each class of pixels, one at a time, through the same
rsonating scheme.

Fourier and moments methods have been shown to deal extremely well with object
rpcoGnition at varying 3-D perspective, producing not only the recognition of the object
but ti orn-taticn (ref 28). In the same reference, the two methods are compared with
uther methods, such as range moments. Fourier and moments methods can be made
i!.va-nt to position, rotation, and scaling by adding the proper modifications. Although
tris properly is valliable during the classification process, it is necessary for a quick
recornstruction of the image to preserve information about these varying attributes. For
examniple. a position invariant transformation generates features that, when inverted, can
h-- vo -evrrpl intorpretations in the image To solve this problem, the value of the

.. .. ... =- -= .,.,= m~mu nnn nanm mum



centroid of the region and the angle of its main axis can be retained as one oi 1;)e
features. These features would aid the inverse transformation in the pixel inhibiting
operation.

Adaptive Methods for Feature Extraction

If it is desired to design even more sophisticated models of feature extraction and
use the features to describe object identification, orientation, and absolute and relative
positions, the adaptive qualities ofthe connectist models can be used again. One of the
classes of adaptive algorithms is called supervised learning. The most popular of such
algorithms for highly parallel networks is called the Generalized Delta Rule (Ref 4). The
user provides the network with a careful choice of examples accompanied by the
desired response of the system. The network proceeds to alter its parameters until the
desired transfer function can be emulated. Mathematical studies of such a model have
shown that unlimited networks can approximate an arbitrary function arbitrarily close.
These issues are beyond the scope of this work.

BIDIRECTIONAL ASSOCIATIVE MEMORIES

The highest module in this identification system is the bidirectional associative
memory. It doubles as a nearest neighbor classifier and a library look up, but because
of its parallel structure, can do both very efficiently. There are two characteristics to the
design of such a memory that appeal to this problem: (1) It can deal with noise ,.,
rupted features very well, even in the presence of hardware damage and (2) it uses a
resonating structure (heteroassociative) which recalls related information to the input,
uses this new information to correct the input, and then reuses the new input for recall.
This process continues until a perfect match is found.

There are severalways that this type of memory could be constructed. The first to
suggest a possible design was Bart Kosko (ref 6). This design displays all the desirable
characteristics discussed above. One major drawback that has driven the research in
this area is the storage capacity of such memories (ref 30). The number of possible
patterns is less than tihe sum of the lengths on the input and output feature vectors.
After this number, the meory tends to generalize and fuse patterns together and some-
stimes generate spurious memories, combinations of other recalls.

Basically, Kosko's memory works through the following computation: Let A be the
input feature vector, and B be the associated output vector. When A is received, a
multiplication of A by a matrix M is performed to generate B. M represents the long

term storage memory of the system. Once B is obtained, a multiplication of B with M is
performed to generate A. If A is corrupted with noise, then the recalled version of B
would be also corrupted. This bidirectional process would continue until the system is
capable of genrating A and B (stable memory points). Notice that a more daring design

II



could couple several of these modules forming a close cicuit where each module would
perform one type of association. This could have a significant impact on the per-
formance of the pattern recognition system. When a good discrimination cannot be
done in any of the individual feature spaces, it might be possible through evidence
accumulation on several spaces.

CONCLUSIONS

The implications of a parallel connectionist-like design for vision system has been
discussed. In particular, the design of a simple object recognition system based on
resonant principles. This design should allow us to tackle problems of noise, occlusion,
and ambiguity in a fresh new light, making heavy use of tightly coupleo continuous
feedback systems for vision. In particular, the implementation of each module is paral-
ie; and simple. The strength of the design is derived from the combination of modules
and the resonant structures.

Some research questions, with great impact to the engineering of such systems,
still remain to be answered: (1) To what degree and under what circumstances is this
system stable, given all the feedback loops? (2) How can bidirectional memories be
designed with very large sotrage capacity to address the vision problem? Nevertheless,
the preliminary results are promising, and the possibilities for designing vision systems
using this technology indicate that it might soon challenge classical systems in speed,
fault tolerance, and performance.

12



REFERENCES

1. Ballard, D.H. and Brown, C.M., Computer Vision, Prentice Hall, 1982.

2. Marr, David, Vision, Freeman, 1980.

3. Marroquin, J.L., "Probabilistic Solution of Inverse Problems," Ph.D. Thesis,
University of Massachusetts, September 1985.

4. Rumelhart, D., McCleland, et al., Parallel Distributed Processing, MIT Press,
1986.

5. Rosemblatt, F., Principles of Neuro Dynamics, New York, Spartan, 1962.

6. Kosko, B., "Bidirectional Associative Memories," IEEE Trans. on SMC, 1987.

7. Cooper, D.B., "Maximum Likelihood Estimation of Markov Process Blob Bound-
aries in Noisy Images," IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, Vol. PAMI-1, 1979, pp 372-384.

8. Scharff, L.L. and Elliot, H., "Aspects of Dyanmic Programming in Signal and
Image Processing," IEEE Trans. Automat. Contr., Vol AC-26, October 1981, pp
1018-1029.

9. Tenorio, M.F., Application of MAP Estimation Techniques to Segmentation on
Remotely Sensed Data, Master's Thesis, Colorado State University, 1982.

10. Elliot, H., Hansen, F.R., Srimivasan, L., Tenorio, M.F., "Application of MAP
Estimation Techniques to Image Segmentation," U. Mass Tech Report UMASS-
ECE-AU82-1, Augus't 1982.

11. Derin, H., Elliot, H., Cristi, R., and Geman, D., "Bayes Smoothing Algorithms for
Segmentation of Binary Images Modelled by Markov Random Fields," lEE.

12. Hansen, F.R. and Elliot, H., "Image Segmentation Using Simple Markov Field
Models," Computer Graphics Image Processing, Vole 20, 1982, pp 101-132.

13. Tenorio, M.F. and Hughes, C., "Real Time Image Segmentation Using an Artifi-
cial Neural Network," IEEE 1st Int. Conf. on Neural Networks, July 1987.

14. Tenorio, M.F., "Implementation of Parallel Resonanting Segmentors Based on
Markov Random Fields," Report for Army Research, Development and Engineer-
ing Center, No. DAAAL03-86-D-0001, DO.0779, August 1988.

13



15. Geman, S. and Geman, D., "Stochastic Relaxation, Gibbs Distribution, and the
Bayesian Restoration of Images," IEEE Trans. on PAMI, Vol 6, no. 6, November
1984.

16. Hopfield, J.J. and Tank, D.W., "Neural Computation of Decisions in Optimization
Problems," Bio. Cybern., 52, 1985, pp 141-152.

17. Derin, H. and Won, C.S., "A Parallel Image Segmentation of Noisy and Textured
Images Using Gibbs Random Fields," IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol PAMI-9, No. 1, Janaury 1987.

18. Bruck, J. and Goodman, J., "On the Power of Neural Networks for Solving Hard
Problems," IEEE Neural Info. Proc. Systems, 1987.

1. Derin, H. and Elliot, H., "Modelling and Segmentation of Noisy and Textured
Images Using Gibbs Random Fields," IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol PAMI-9, No. 1, January 1987.

20. Hu, M.K., "Visual Pattern Recognition by Moment Invariants," IRE Trans. Inform.
Theory, IT-8, 1962, pp 179-187.

21. Kulh, F., "Classification and Recognition of Hand-Printed Ch aracters," IEEE
International Convention Record, Pt. 4, 1963, pp 75-93.

22. Persoon, E. and Fu, K.S., "Shape Description Using Fourier Descriptors," IEEE
trans. SMC, 7, 1977.

23. Dudani, S.A., Breeding, K.J., and McGhee, R.B., "Aircraft Identification by Mo-
ment Invariants," IEEE Transaction on Computer, C-26(1), January 1977, pp
39-46.

24. Reeves, A.P. and Rostampour, "Shape Analysis of Segmented Objects Using
Moments,: 1981 Pattern Recognition and Image Porcessing Conference, Dallas,
Texas (1981), pp 171-174.

25. Reeves, A.P., Prokop, R.J., Andrews, S.E., and Kuhl, F.P., "Three Dimensional
Shape Analysis Using Moments and Fourier Descriptors," Proc. of Seventh Intl.
Con. on Pattern Recognition, July 1984, pp 447-450.

26. Reeves, AP., Prokop, R.J.,and Taylor, R.W., "Shape Analysis of Three Dimen-
sional Objects Using Range Information," Trans. of the IEEE Computer Vision
and Pattern Recoqnition Conference, June 1985.

14



27. Kuhl, F.P. and Giardina, C.R., "Elliptic Fourier Features of a Closed Contour,"
Computer Graphics and Image Processing 18 (1982), pp 236-258.

28. Kuhl, F.P., Reeves, A.P., Taylor, R.W., "Shape Identification with Moments and
Fourier Descriptors," Proc. of the 1986 ACSM-ASRS Annual Conference Vol. 4,
Washington, DC, pp 159-168, March 16-21 1986.

29. Ersoy, 0., Chen, C.H., Yu, P.T., Yegani, P., "Information Processing and Storage
Based on Transforms and Neural Networks," First International Conference on
Neura! Networks, July 1987.

30. Bachman, C.M., Cooper, L.N., Dembo, A., and Zeitouni, 0., "A Relaxation Model
for Memory with High Storage Density," Neural Networks, 1988.

15



BIBLIOGRAPHY

1. Bruck, J. and Goodman, J., "On the Power of Neural Networks for Solving Hard
Problems," IEEE Neural Info. Proc. Systems, 1987.

2. Transactions on Pattern Analysis and Machine Intelligence, Vol PAMI-6, No. 6
November 1984.

3. Granlund, "Fourier Preprocessing for Hand Print Character Recognition," IEEE
Trans. Comput. C-21,1972, pp 195-201.

4. Hansen, F., "Application of Markov Field Models to the Design and Analysis of
Image Segmentation Algorithms," Master's Thesis, Colorado State University,
1981.

5. Hopfield, "Neurons with Graded Response Have Collective Computational
Properties Like Those of Two-State Neurons," Proc. Natl. Acad. Sci., Vol 81, May
1984, pp. 3088-3092.

6. Tenorio, M.F. and Codrington, C., "Massively Parallel Image Segementation
Algorithms Based on Simple Markov Field Models," Technical Report, School of
Electrical Engineering, Purdue University, in preparation.

7. Tenorio, M.F., "Serial and Parallel Image Segmentation Based on MAP Estin,"
tion Techniques," Report for Army Research, Development, and Engineering
Center, No. DAAAL03-86-D-001, DO.0779, August 1988.

8. Tenorio, M.F. and Codrigton, C.W., "Applications of Simple Markov Models to
Computer Vision," Technical Report, School Electrical Engineering, Purdue
University, November 1987.

17



DISTRIBUTION LIST

Comnander
Armament Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-IMI-I (5)
Picatinny Arsenal, NJ 07806-5000

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-GCL(D)
Picatinny Arsenal, NJ 07806-5000

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria. VA 22304-6145

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-MP
Aberdeen Proving Ground, MD 21005-5066

Commander
Chemical Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-MSI
Aberdeen Proving Ground, MD 21010-5423

Commander
Chemical Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-RSP-A
Aberdeen Proving Ground,MD 21010-5423

Director
Ballistic Research Laboratory
ATTN: AMXBR-OD-ST
Aberdeen Proving Ground, MD 21005-5066

19



Chief
Benet Weapons Laboratory, CCAC
Armament Research, Development and Engineering Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-CCB-TL
Waterliet, NY 12189-5000

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-ESP-L
Rock Island, IL 61299-6000

20


